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A B S T R A C T

Remote sensing data is widely used in numerous ecological applications. The Sentinel-2 satellites (S2 A and B),
recently launched by the European Spatial Agency's (ESA), provide at present the best revisit time, spatial and
spectral resolution among the freely available remote sensing optical data. In this study, we explored the po-
tential of S2 enhanced spectral and spatial resolution to explain and predict mice abundances and distribution in
border habitats of agroecosystems. We compared the predictive ability of different vegetation and water indices
derived from S2 and Landsat 8 (L8) imagery. Our analyses revealed that the best predictor of mice abundance
was L8-derived Enhanced Vegetation Index (EVI). S2-based indices, however, outperformed those computed
from L8 bands for indices estimated simultaneously to mice trappings and for mice distribution models.
Furthermore, indices including S2 red-edge bands were the best predictors of the distribution of the two most
common rodent species in the ensemble. The findings of this study can be used as guidelines when selecting the
sensors and vegetation variables to be included in more complex models aimed at predicting the distribution and
risk of various vector-borne diseases, and especially rodents in other agricultural landscapes.

1. Introduction

Remote sensing data is nowadays widely used in environmental and
ecological studies and applications including the field of disease
ecology or landscape epidemiology (Carroll et al., 2009). Data acquired
by different satellite sensors like Landsat TM and ETM+ (Malahlela
et al., 2018), NOAA's AVHRR, SPOT (Beck et al., 2000; Glass et al.,
2002; Ostfeld et al., 2005) or MODIS (Andreo et al., 2011; Andreo et al.,
2014; Midekisa et al., 2014; Neteler et al., 2011), among others, were
used for mapping animal host or vector habitats and predicting human
transmission risk at different spatial and temporal scales. Currently, the
availability of the new generation of medium resolution sensors, such as
the Multi-Spectral Instrument (MSI) on board the Sentinel-2 (S2) sa-
tellites from the European Spatial Agency (ESA), offers new opportu-
nities for many ecological applications. S2 MSI main features include
increased revisit frequency (5 days since 7 March 2017 with the launch

of S2B), finer spatial resolution (10m resolution for visible and near-
infrared (NIR) bands) and increased spectral resolution (13 bands in-
cluding coastal aerosol band, 3 red-edge bands, water vapour, short
wave infrared (SWIR)-cirrus and two additional SWIR bands). Im-
portantly, the data from this satellite are completely free of charge. The
use of these new data is in steep increase in various research and ap-
plication fields. Several studies have investigated the application of S2
imagery, for example in mapping and monitoring burnt areas
(Verhegghen et al., 2016), crop types and invasive species, in evalu-
ating water constituents (Dörnhöfer et al., 2016) or in coral bleach
detection (Hedley et al., 2012). However, to the best of our knowledge,
there are just a few applications of S2 data for animal and disease
ecology (Peckham and Sinha, 2017).

Rodents are among the most studied animals mainly because they
are hosts or reservoirs of several different viruses known to cause severe
and even fatal diseases in humans all over the world. The most severe
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rodent-borne viruses are those causing hemorrhagic fevers: the arena-
viruses (e.g.: Junin virus, causal agent of the Argentine Haemorrhagic
Fever) and the hantaviruses (e.g.: Sin Nombre and Andes viruses, causal
agents of Hantavirus Pulmonary Syndrome in the Americas; Hantaan,
Puumala and Seoul viruses, causal agents of the Hemorrhagic Fever
with Renal Syndrome in Europe and Asia, among others). In general,
each virus is associated with a single rodent species in which it estab-
lishes a prolonged infection (only very rarely it produces disease in the
animal host). These viruses are transmitted to humans predominantly
via airborne particles of saliva, urine or faeces from infected rodents
(Meerburg et al., 2009; Watson et al., 2014). In this context, the re-
lationship among the host-vector abundance and variables of its ha-
bitat, i.e., which habitat variables and values of habitat variables de-
termine the presence and abundance of hosts and vectors in space and
time, becomes crucial (Mills and Childs, 1998). Therefore, the mon-
itoring of habitats and the study of relevant environmental variables (at
a proper spatial and temporal resolution) by means of remote sensing is
valuable knowledge that can be integrated and applied in the devel-
opment of predictive models (Mills and Childs, 1998) and operative
systems for risk monitoring and early warning (Porcasi et al., 2012).

The agroecosystems of central Argentina are inhabited by several
rodent species that can be the hosts to different viruses: Calomys mus-
culinus (corn mouse) is the natural reservoir of Junín arenavirus, the
etiological agent of the Argentine Hemorrhagic Fever (AHF) (Sabattini
et al., 1970); Akodon azarae (Pampean grassland mouse) is the reservoir
of the hantavirus Pergamino (Levis et al., 1998); Calomys venustus
(Córdoba vesper mouse) is the reservoir of the arenavirus Latino-like
(Calderón et al., n.d.) and Oligoryzomys flavescens (yellow pygmy rice
rat) is the host of the virus Lechiguanas and Hu39694 known to cause
Hantavirus Pulmonary Syndrome in humans (Levis et al., 1998). Pre-
vious studies in such agroecosystems (Andreo et al., 2009a, b; Andreo
et al., 2009b; Polop et al., 2008; Polop et al., 2012; Simone et al., 2012)

have used low to middle resolution satellite imagery (NOAA-AVHRR,
MODIS, Landsat TM and ETM+) to relate habitat features derived from
remote sensing (esp. traditional vegetation indices like NDVI) with mice
abundances. The reported results have been clear for one particular
rodent species in long-term studies, namely A. azarae in railroad banks,
but not so clear for other rodent species in crop field borders (Andreo
et al., 2009a; Andreo et al., 2009b; Simone et al., 2012). This might be
related to a poor delineation and consequently, a poor characterization
of their habitats, i.e., crop field borders, given the spatial resolution of
remote sensing data used. An increased spatial resolution (10m in S2 vs
30m in L8) is therefore expected to reap benefits in the prediction of
mice abundance and distribution. Moreover, vegetation indices based
on S2 red-edge bands, that have proven to be related to vegetation
phenology and health status (Immitzer et al., 2016), are expected to
have higher predictive power since they can better relate to mice ha-
bitat quality.

The aim of this study was to explore the potential advantages of
using S2 data and compare to L8 in their ability to explain and predict
mice abundance and distribution in linear habitats of agroecosystems
from central Argentina.

2. Materials and methods

2.1. Study area

The study was carried out in the south-west of Córdoba province,
Argentina (Fig. 1). The area is a typical undulating pampean plain
(600–900m a.s.l.). The climate is temperate with an average tempera-
ture of 23 °C in January and 6 °C in July. Annual mean rainfall is about
800–900mm, mostly concentrated in summer months. The natural
transitional landscape of woodland (dominated by Prosopis alba, P.
nigra, P. caldenia, Celtis tala, Acacia caven and Geoffroea decorticans) and

Fig. 1. Spatial distribution of rodent traplines in the rural area of Chucul (Córdoba province, Argentina). Period 2016–2017.
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pampean natural grassland (Stipa spp.) remains in patches among crop
fields. The vegetation has undergone marked alterations as a result of
agriculture and cattle farming. Currently, the landscape mainly consists
of individual crop fields surrounded by wire fences with borders
dominated by weed species. In general, these border habitats are less
disturbed than agricultural fields, maintaining relatively high plant
cover throughout the year, thus providing good habitat conditions for
small rodent species (Bilenca and Kravetz, 1998; Ellis et al., 1997). A.
azarae, C. musculinus and C. venustus are the most abundant species
inhabiting such border habitats (Andreo et al., 2009a; Simone et al.,
2012). However, these species show temporal and spatial variations in
their abundance. A. azarae and C. venustus are usually found in rela-
tively stable habitats with high vegetation cover, while C. musculinus
has been also captured in crop fields (Busch et al., 2000). O. flavescens is
found in border habitats, though usually in much lower numbers (Mills
et al., 1991).

2.2. Small rodents data

We used mark-recapture data from mice live-trapping conducted on
four consecutive nights on a seasonal basis: November 2016 (spring),
February 2017 (summer) and April 2017 (autumn), in 24 traplines lo-
cated in crop-field borders that were selected from satellite images as
described in (Simone et al., 2010). Each trapline consisted of 20
Sherman-type live traps baited with a mixture of peanut butter and cow
fat, placed ≈ 5m apart from each other. For summer and autumn 2017,
11 additional borders were selected according to neighbouring crops
(i.e. maize or soybean). Population abundance was estimated from the
minimum number of animals known to be alive (MNKA). The spatial
distribution of traplines is shown in Fig. 1.

2.3. Remote sensing data

We downloaded 11 S2 scenes and 11 L8 scenes (path 229, row 83)
for the period September 2016–April 2017 (Table 1). Top of atmo-
sphere (TOA) Level-1C S2 scenes were processed to Bottom of atmo-
sphere (BOA) reflectance (Level-2A surface reflectance product) using
sen2cor plugin v2.3.1 (Muller-Wilm et al., 2013) available on the
Sentinel Application Platform (SNAP) distributed under GNU GPL li-
cense.

L8 imagery was obtained as surface reflectance products (BOA) di-
rectly from United States Geological Service (USGS) site (https://
earthexplorer.usgs.gov/). All images were imported into
(GRASS GIS Development Team, 2018) database and co-registered to a
single scene, with overall mean RMSE<5m (Table 1). S2 bands 5, 6, 7,
8A, 11 and 12 were resampled to 10m by nearest neighbour resampling
(Ng et al., 2017; Zheng et al., 2017) and further used to estimate

different vegetation and water indices (see Table 6 in Section 5, Ap-
pendix).

We extracted spatially aggregated average values for each index in
the pixels that were overlapped by the traplines. Fig. 2 shows an ex-
ample of the resultant polygons for S2 and L8 images. All remote sen-
sing processing was done in (GRASS GIS 7 Development Team, 2018).

2.4. Statistical analysis

We fitted univariate generalized semi-parametric models (Green
and Yandell, 1985) between mice counts and each S2 and L8-derived
vegetation and water index. We treated the observed number of mice yij
at sampling locations i=1, . . , n and seasons j=1,2,3 as Poisson
random variables with mean μij, and linked with a linear predictor log
(μij)= αj+ f(x)+Ui+ Vi. Here, αj are random intercepts across sea-
sons, f(x) is a nonlinear smooth function of the vegetation and water
indices, and the Ui and Vi denote correlated and uncorrelated spatial
variation across sampling locations, respectively. The correlated and
uncorrelated spatial variation parameters account for extra Poisson
variation due to important unmeasured explanatory variables.

We used quadratic penalized splines with truncated power basis
functions for f(x), leading to the following parametrization

= + + + + +
=

log µ x x x U V( ) ( )ij j i i
m
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m i m i i1 2
2
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2

(1)

where β1 and β2 are fixed effect coefficients, γ1,… , γM are the coeffi-
cients of the quadratic spline basis (xi− κm)2 with knots κ1,… , κM. We
applied a Bayesian model fitting, hence all parameters were assumed
unknown and were assigned an a priori distributions.

For αj, we set α1= 0 for identification purposes and assumed non-
informative prior knowledge with a flat distribution for α2 and α3. For
the fixed effect coefficients β1 and β2, we assumed a non-informative
Gaussian prior distribution with zero mean and a precision of 0.001.
For the random effect coefficients, γ1,… , γn, Gaussian prior distribu-
tions with zero mean and gamma precision θγ∼Ga(0.05,0.05) were
assumed. Similarly, we assigned a Gaussian prior distribution with zero
mean and gamma precision θU∼Ga(0.05,0.05) to the uncorrelated
spatial variation Ui. For the spatially correlated variation, we assigned a
zero mean multivariate Gaussian process Vi∼MVN(0,Σ) with variance-
covariance matrix Σ= exp (−ϕd) defined by an isotropic exponential
function based on the distance between observation pairs d and the rate
of distance decay parameter ϕ. We assigned a uniform prior distribution
to the distance decay parameter ϕ∼ unif(0,6000). The prior distribu-
tions together with the likelihood of the data were updated to obtain
the posterior distributions of the parameters by drawing 10,000 Markov
Chain Monte Carlo (MCMC) simulations of the Gibbs sampler with a
thinning of 1, of which the first 2000 were discarded.

We also ran univariate generalized semi-parametric models for the
two most common species of the ensemble: A. azarae and C. musculinus.
Since count data contained many zeroes, we converted abundances into
presence-absence data and ran logistic type models following the same
approach described above.

The models were implemented in the WINBUGS 1.4.3 software
package (Spiegelhalter, 2008). Convergence was assessed graphically
using autocorrelation plots of the traces. We used the posterior pre-
dictive probabilities, as suggested by (Lunn et al., 2012), to assess the
adequacy of the models. We generated posterior predictive distribu-
tions under each model and compared them with the observed data. We
then calculated Bayesian p-values which give the predictive probability
of obtaining an extreme result. A p-value close to 0 or 1 suggests that
the generated data are extreme and hence the fit is poor, whereas a p-
value close to 0.5 suggests that the generated data are compatible with
the model. The deviance information criterion (DIC) (Spiegelhalter
et al., 2002) was used to assess the relative goodness-of-fit of the dif-
ferent univariate models. Models with lower DIC value were judged to

Table 1
Date of S2 and L8 images used and root mean squared error (RMSE) corre-
sponding to the co-registration of images. The unit of RMSE is meters (m).

Landsat-8 Sentinel-2

Date RMSE Date RMSE

2016/10/01 1.90 2016/09/02 5.02
2016/11/02 8.60 2016/09/22 3.60
2016/11/18 1.07 2016/10/02 7.08
2016/12/04 3.00 2016/11/01 4.20
2016/12/20 6.00 2016/11/11 8.80
2017/01/05 0.90 2016/12/01 3.06
2017/01/21 6.50 2016/12/11 3.03
2017/02/06 0.50 2017/01/30 5.70
2017/02/22 2.40 2017/02/19 0.03
2017/03/10 2.30 2017/03/21 2.60
2017/04/11 5.03 2017/04/30 7.80
Mean RMSE 3.48 Mean RMSE 4.62
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be the best representation of the data. We addressed the ability of
models to predict total mice abundances (all species together) and A.
azarae and C. musculinus distribution using the satellite derived indices
obtained simultaneously to the mice trapping (t0), and 1 and 2months
before the trappings (t−1 and t−2, respectively). We performed
different comparisons: first we assessed all satellite indices together,
both for total mice counts and A. azarae and C. musculinus' distribution.
Then, to assess the effects of different spatial resolution in the pre-
dictive ability of satellite indices, we compared models including in-
dices that are common to both S2 and L8. Finally, we evaluated the
performance of satellite indices that are exclusive to S2, i.e., those using
the red-edge and narrow NIR bands that are absent in the L8 sensor.

3. Results

A total of 464 individuals were captured during the three trapping
seasons (from spring 2016 to autumn 2017) with a sampling effort of
7520 trap-nights (estimated as traps * nights). C. musculinus was the
most common species (39%), followed by A. azarae (32%), C. venustus
(22%) and O. flavescens (4%). Fig. 3 shows the abundances of rodent
species per trapline over the three sampling seasons.

We obtained adequate fit for all models as their average Bayesian p-
values, i.e., the predictive probability of obtaining an extreme result,
were within the acceptable range and close to 0.5 (Fig. 4a). Fig. 4b
shows the relative seasonal effects of the second and third trapping
seasons (summer and autumn) compared with the first trapping season
(spring, reference season). In all instances, the effects of the second and
third trapping seasons were higher than the first, except for model #51
testing Simple Ratio, SR, from L8 in t−1 as mice abundance predictor.
The second trapping season (summer) had a higher effect than the third
trapping season from model 1 up to model 20 (all S2 indices estimated
at t0). Moreover, the proportion of spatial correlation to the overall
spatial variation ranged from 48 to 51% (see Fig. 4c), suggesting nearly
equal variances for the correlated and uncorrelated (random) spatial
variation. Similar results were obtained for the distribution models
fitted for A. azarae and C. musculinus (see Figs. 1 to 3 in Supplementary
Material).

Table 2 shows the first 10 univariate models for mice total counts
sorted according to increasing DIC values. The best predictor of mice
total counts in the period spring 2016 – autumn 2017 was the Enhanced
Vegetation Index (EVI) from L8 measured 2months before trappings
(t−2). Indeed, even if only EVI could be selected as the best predictor,
most univariate models in Table 2 included L8 indices, and especially
those measured at t−2. Four S2 indices were included in this top 10
ranking, and three of them included the red edge band 5 and were

recorded at t0. They are, however, distant in DIC terms from the re-
sulting best predictor, i.e., for total mice count the only index that
shows statistical support according to DIC values is L8 EVIt–2.

To assess the effects of different spatial resolutions, we compared
models including indices that are common to both S2 and L8 satellites
estimated at t0, t−1 and t−2. These results are presented in Table 3.
We observed that S2 indices are only consistently better than those of
L8 when we considered those taken simultaneously to mice trappings.
Indeed, the lowest DIC in this comparison was achieved by the S2
Normalized Difference Water Index (NDWI). When comparing models
with indices recorded at t−1 and t−2, L8 indices had a much lower
DIC than S2 indices in the majority of cases. Notably, again NDWI, but
from L8, was the best mice abundance predictor from the indices
measured at t−1 (Table 3).

Considering only indices that are exclusive to S2, the best models
were those including the first and third red-edge bands (band 5 and 7,
respectively) (Table 4) such as the NDVI at t0 and the chlorophyll index
(Clre) measured at t−1 and t−2. For t0, the NDVI estimated with
band 5 and the narrow NIR (band 8A) showed almost the same DIC
value as the NDVI estimated with band 5 and 8.

When we compared univariate models for A. azarae and C. muscu-
linus, we observed that the distribution of both species was better
predicted (lowest DIC values) by indices obtained from S2 data
(Table 5). The best index explaining A. azarae's distribution was
NDVIt–1 estimated with the second red edge band (band 6). Further-
more, this same index obtained at t−2, the NDVI t–1 estimated with the
red edge band 7 and the Modified Simple Ratio red edge (MSRre) also
showed statistical support according to the ΔDIC values. The index with
the lowest DIC for C. musculinus' distribution models was NDVI t–1 es-
timated with the red edge band 7. Notably, most models for this rodent
species show ΔDIC < 2 (Table 5). Therefore it is difficult to identify a
few meaningful indices. Tables comparing all S2 and L8 indices plus S2
specific indices separately for A. azarae and C. musculinus can be found
in the Supplementary Material.

When splitting S2 and L8 indices at t0, t−1 and t−2, we observed
that only for some indices the difference in DIC values was higher than
2. In most cases this difference favoured S2 derived indices for pre-
dicting the distribution of the two most abundant rodent species (See
Tables 1 and 3 in the Supplementary Material). NDVI and EVI derived
from S2 satellite appeared repeatedly as good predictors at t0 and t−1
for both A. azarae and C. musculinus, as well as NDWI derived from L8.
The MNDWI t–2 derived from S2 was better than that of L8 for both mice
species. Among the indices exclusive to S2, the best predictor of A.
azarae's and C. musculinus' distribution was NDVI t–1; for A. azarae it was
estimated using red edge band 6 and for C. musculinus using red edge

Fig. 2. Comparison of pixel sizes and corresponding EVI values in Sentinel-2 and Landsat-8 scenes. The figure shows how S2 imagery identifies and “sees” the road,
while L8 data misses it.
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band 7. At t−2, NDVI estimated with S2 band 6 appeared again as a
good predictor for both species (Tables 2 and 4 in the Supplementary
Material).

Fig. 5 shows the non-linear plots depicting the relationship among
mice counts and probability of occurrence with vegetation indices for
the models with the lowest DIC values. Fig. 5a shows that mice counts
decrease when EVI t–2 is below ≈ 0.5–0.6 and then increase. The
probability of occurrence of A. azarae decreases with NDVI(B6&B8) t–1
as well as that of C. musculinus as a function of NDVI(B7&B8) t–1. The
plots for all fitted models are included in the Supplementary Material.
Note for example, that the NDWI both from S2 and L8, estimated at t0
and t−1 shows a positive association with mice counts.

4. Discussion

The overall goal of this study was to explore the potential of S2 as
compared to L8 to predict mice abundance and distribution in border
habitats of central Argentina's agroecosystems. Visually, S2 is better
than L8 for the identification and delineation of such narrow rodents
habitats (Fig. 2) (Radoux et al., 2016). When ranking models to account
for mice abundance, however, the best predictor was EVI t–2 from L8
(Table 2). Moreover, in the comparisons among S2 and L8 common
indices to predict mice abundance, the S2 advantage in terms of spatial
resolution was only evident for indices obtained simultaneously to mice
trappings (Table 3). On the contrary, S2 indices seemed more relevant
for modeling the distribution of the most common rodent species
(Table 5). Indeed, the NDVI estimated with red edge bands 6 and 7
showed the lowest DIC values in models predicting the distribution of
A. azarae and C. musculinus, respectively (Table 5). The importance of
S2 red-edge bands was already reported in other studies that used these
bands to measure chlorophyll content (Delegido et al., 2011), estimate
burn severity (Fernández-Manso et al., 2016), predict leaf nitrogen
content (Ramoelo et al., 2015) and map croplands (Kalluri et al., 2007).

The relevance of vegetation for rodent populations is well known, as
it can provide shelter, food, nesting opportunities, as well as protection
from predators. Different studies in Argentinean agroecosystems have
also tested this relationship both with remote sensing and field data
(Andreo et al., 2009a, b; Gomez et al., 2018; Polop et al., 2008; Polop
et al., 2012; Simone et al., 2010; Simone et al., 2012). Our results
pointed to EVI t–2 derived from L8 as the best predictor (ΔDIC < 2) of
mice abundance. Even if EVI is generally known to correct for back-
ground and atmosphere noises (Gao et al., 2000; Huete et al., 1985),

this result does not fully support our initial hypothesis that S2 enhanced
spatial resolution would perform better. Instead, it suggests that there
must be some context environmental information relevant for mice
abundances that is better captured by a 30m side pixel rather than by a
10m one. S2 indices, however, performed better than those derived
from L8 for mice abundance models at t0. This implies that if only si-
multaneous remote sensing data are available, then S2 is the best
choice.

Sentinel-2 enhanced spatial and spectral resolution seemed to pay
off for predicting A. azarae and C. musculinus distribution (Table 5).
Indeed, the best predictors were derived from S2 data and included red
edge and narrow NIR bands. We could infer from this that vegetation
health and quality (as recorded by red edge NDVI) is a better de-
terminant of mice distribution than of mice abundance. In this sense, A.
azarae is known to prefer highly covered areas, and sexually active
females select areas with great amounts of green cover (Bilenca and
Kravetz, 1998; Ellis et al., 1997). Meanwhile, C. musculinus is a more
opportunistic species and more tolerant to environmental changes
(Busch et al., 2000; Mills et al., 1991). Both species displayed a negative
association with red-edge NDVIt–1, implying that higher vegetation
cover/quality would yield lower presence probability in the next
month. This might be consistent with the opportunistic nature of C.
musculinus that is commonly found in crop fields (Mills et al., 1991) and
also with the fact that A. azarae is a dominant competitor in borders,
relegating the former to habitats of less quality within borders (Busch
and Kravetz, 1992). For A. azarae, we would have expected a positive
relation with NDVI as observed in seasonal and inter-annual studies
(Andreo et al., 2009a, b). It has been observed, however, that A. azarae
increases the use of cropfields during late spring and summer when they
offer better cover and more food than borders (Bilenca and Kravetz,
1998). After the harvest, A. azarae returns to border habitats which
quality is not so high but still better than cropfields (Cavia et al., 2005;
Hodara and Busch, 2006). This differential use of borders and cropfields
might explain the negative relation of A. azarae and red edge NDVI. In
any case, a better comprehension of the red edge NDVI range of values
with regards to field conditions, as well as the intra-seasonal relation to
plant cover, would be needed.

The association of time lagged vegetation indices with mice abun-
dances was already observed by (Andreo et al., 2009a, b) for A. azarae.
This lagged response of mice abundances to their environment is gen-
erally expected given that rodent populations need to go through cer-
tain processes to respond to environmental changes. For instance, it

Fig. 3. Mice abundances as Minimum Number of Known Alive (MNKA) per species in each trapline and over the three sampling seasons (spr16: spring 2016, sum17:
summer 2017 and aut17: autumn 2017) in the rural area of Chucul, central Argentina.
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takes ≈25 days of pregnancy plus at least other ≈40 days until sexual
maturity (Mills et al., 1992). Therefore, 2 months of delay in the re-
sponse as suggested by the best univariate models would mean that the
effects of changes in vegetation cover in February, for example, will be
visible in April (early autumn in the Southern hemisphere) mice
abundances. One might hypothesize that a higher value of the vegeta-
tion index corresponds to higher mice abundances as observed when
using linear models (Andreo et al., 2009c). The use of non-linear
models, however, allows to uncover other types of relations (Fig. 5 and
Supplementary Material). Indeed, the association of mice abundance
with EVIt–2 (Fig. 5a) shows that up to ≈ 0.5, mice abundances seem to
decrease. This may be reflecting low EVI values in late March–April due
to harvest or early frosts when abundances are still increasing to reach
the annual peak by May–June (Andreo et al., 2009a, b; Simone et al.,
2012). It was out of the scope of this study to test further time lags. Our
results so far are consistent with previous studies using remotely sensed
vegetation indices to predict mice abundances in agroecosystems
(Andreo et al., 2009a,b).

Advantages of S2 increased spectral resolution for ecological ap-
plications involving vegetation and animals such as rodents have been

proven in our study especially for mice distribution. More data would
be necessary to test these indices as predictors of abundance on a per
species basis. Unfortunately, however, S2 lacks thermal band and
therefore it cannot be used to derive land surface temperature which is
an important variable for identifying and monitoring numerous pa-
thogens and insect vectors (Flood, 2017). Moreover, since S2 is a re-
latively new Earth Observation (EO) mission, applications requiring
historical data will need to refer to Landsat or other EO records. In the
perspective of a combined S2 and L8 use, there are some differences to
be considered. On the one hand, previous studies have reported a
misalignment of several pixels between L8 and S2 (Novelli et al., 2016).
These misalignments are relevant when mapping the habitats of dif-
ferent disease hosts and vectors, or placing traplines in roadsides as in
the present study. Therefore, images coming from the two sensors need
to be manually co-registered (See Table 1). On the other hand, careful
attention is required in the selection of the NIR bands used to compute
vegetation indices, since the NDVI values computed using S2 band 8
proved to be lower than the L8 NDVI values (Mandanici and Bitelli,
2016). The plot presented in Fig. 6 depicts the time series of average
NDVI and EVI per trapline as estimated by the data of each sensor plus a
locally weighted smoothing line (LOESS). This difference might be re-
levant if data from the two satellites must be combined in a single time
series (Steven et al., 2003; van Leeuwen et al., 2006). Previous studies
suggested that S2 band 8A (narrow NIR at 20m of spatial resolution)
would be the best choice when combining images acquired by these two
platforms since this band is spectrally more similar to the L8 NIR band
(Zhang et al., 2018). In order to take advantage of the 10m resolution
of S2 band 8 (wider NIR) and use this data along with L8 data, the
differences in the estimates of the biophysical variables by adjusting the
reflectance values of the two sensors (Mandanici and Bitelli, 2016).
Nonetheless, the discrepancy observed for NDVI seems to not affect EVI
in our study area. Therefore, EVI might be a good candidate to build
combined time series of L8 and S2 data.

Despite the above-mentioned challenges, S2 has opened new op-
portunities for ecological applications by allowing detailed mapping of

Table 2
Ranking of the first 10 univariate models for total rodent counts in border
habitats of agroecosystems of central Argentina (spring 2016-autumn 2017)
sorted by Δ DIC values. Abbreviations: EVI-Enhanced Vegetation index; NDVI-
Normalized Difference Vegetation Index; DVI-Difference Vegetation Index;
NDWI-Normalized Difference Water Index; CLre-Chlorophyll Index red edge;
GNDVI-Green Normalized Vegetation Index; t0-simultaneous to the sampling
date; t−1 and t−2-one and two months before the sampling date, respec-
tively.

Index Satellite DIC Δ DIC

EVI t–2 L8 481.45 0.00
NDVI t–2 L8 485.98 4.53
DVI t–2 L8 487.66 6.22
NDWI t–2 L8 493.40 11.95
Clre t–2 S2 495.89 14.45
NDWI t–1 L8 498.10 16.65
NDWIt0 S2 499.22 17.77
GNDVI t–2 L8 500.21 18.77
NDVIt0 (B5&B8) S2 500.86 19.41
NDVIt0 (B5&B8A) S2 500.95 19.51

Table 3
Comparison of univariate models for total rodent counts and S2 and L8 indices
in border habitats of agroecosystems of central Argentina (spring 2016-autumn
2017).

t0 t−1 t−2

Index DIC (S2) DIC (L8) DIC (S2) DIC (L8) DIC (S2) DIC (L8)

NDVI 501.97 511.27 514.72 502.44 506.33 485.98
EVI 505.78 510.79 510.70 504.65 501.81 481.45
GNDVI 502.10 508.11 510.44 501.58 511.64 500.21
DVI 507.21 511.30 510.17 513.78 503.70 487.66
SR 507.41 510.70 514.53 506.16 513.53 514.25
NDWI 499.22 507.68 510.63 498.10 510.54 493.40
MNDWI 515.91 517.90 512.05 512.12 516.44 507.10

Abbreviations: NDVI-Normalized Difference Vegetation Index; EVI-Enhanced
Vegetation index; GNDVI-Green Normalized Vegetation Index; SR-Simple Ratio;
DVI-Difference Vegetation Index; NDWI-Normalized Difference Water Index;
MNDWI-Modified Normalized Difference Water Index; t0-simultaneous to the
sampling date; t−1 and t−2-one and two months before the sampling date,
respectively.
Lowest DIC values per time lag are marked in bold for easier identification.

Table 4
Comparison of univariate models for total mice counts and S2 specific vege-
tation indices in border habitats of agroecosystems of central Argentina (spring
2016-autumn 2017).

S2 index t0 t−1 t−2

DIC DIC DIC

NDVI (B5&B8) 500.86 515.85 507.60
NDVI (B6&B8) 505.91 512.75 515.64
NDVI (B7&B8) nc 516.54 509.05
NDVI (B4&B8A) 502.72 511.68 511.55
NDVI (B5&B8A) 500.95 512.52 508.41
NDVI (B6&B8A) 516.20 514.20 517.25
NDVI (B7&B8A) 515.95 515.80 510.88
PSRI 506.90 514.66 504.34
Clre 505.22 507.54 495.89
MSRre 505.79 514.92 509.77
MSRren 503.86 509.39 513.71
NDre1 501.89 515.23 503.92
NDre2 502.73 514.34 508.28

Abbreviations: NDVI-Normalized Difference Vegetation Index; PSRI-Plant
Senescence Reflectance Index; Clre-Chlorophyll Index red edge; MSRre-
Modified Simple Ratio red-edge; MSRren-Modified Simple Ratio red-edge
narrow; NDre1-Normalized Difference red-edge 1; NDre2-Normalized
Difference red-edge 2; t0-simultaneous to the sampling date; t−1 and t−2-one
and two months before the sampling date, respectively; nc-no convergence.
Lowest DIC values per time lag are marked in bold for easier identification.
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habitats (Shoko and Mutanga, 2017; Traganos and Reinartz, 2018) and
environmental variables. Additionally, the 5 ays revisit time of S2 offers
an unprecedented possibility to monitor environmental variables and
their dynamics in an operational context and completely free of charge.
Our findings are relevant for ecologists and other researchers using
remote sensing data to predict animal distribution and abundances,
especially animals involved in zoonotic diseases cycles. Moreover, some
of the indices that appeared significant were those obtained 1 and
2months before the trappings, which would allow for example, the use
of S2 together with L8 in operative monitoring systems for early
warning (Porcasi et al., 2012). There are already some efforts aimed at
providing harmonized Landsat/Sentinel data (Helder et al., 2018) from
which many applications will benefit.

5. Conclusions

We explored the spatial and spectral potential of S2 data for pre-
dicting mice abundances and distribution. S2 derived indices out-
performed those from L8 only when indices were computed simulta-
neously to trappings in the case of abundances and, for distribution
models. This indicates that an enhanced spatial resolution not always
yields better predictions. We further showed the relevance of the
narrow NIR and red-edge bands-based vegetation indices to predict
mice distribution in an agroecosystems of central Argentina. The find-
ings of this study can be used as guidelines when selecting the sensors
and vegetation variables to be included in more complex models aimed
at predicting the distribution and risk of various vector-borne diseases,
and especially rodents in other agricultural landscapes.

Table 5
Ranking of the first 15 univariate models for A. azarae and C. musculinus' distribution in border habitats of agroecosystems of central Argentina (spring 2016-autumn
2017) sorted by ΔDIC values. Abbreviations: GNDVI-Green Normalized Difference Vegetation Index; MSRen-Modified Simple Ratio red-edge narrow; NDre2-
Normalized Difference red-edge 2; Clre-Chlorophyll Index red edge; EVI-Enhanced Vegetation index; DVI-Difference Vegetation Index; PSRI-Plant Senescence
Reflectance Index; t−1 and t−2-one and two months before the sampling date, respectively.

Index A. azarae C. musculinus

Satellite DIC Δ DIC Index Satellite DIC Δ DIC

NDVIt–1 (B6&B8) S2 140.74 0.00 NDVI t–1 (B7&B8) S2 141.46 0.00
NDVI t–2 (B6&B8) S2 142.08 1.34 MNDWI t–2 S2 141.75 0.30
NDVI t–1 (B7&B8) S2 142.64 1.90 PSRI t–1 S2 142.51 1.05
MSRre S2 142.64 1.90 EVI S2 142.83 1.38
MNDWI t–2 S2 143.02 2.28 NDre2 S2 142.86 1.41
PSRI S2 143.21 2.47 NDVI t–1 (B4&B8) S2 142.98 1.53
NDre1 t–2 S2 143.28 2.54 NDVI (B4&B8A) S2 143.12 1.67
NDVI (B5&B8) S2 143.32 2.59 NDVI t–2 (B6&B8) S2 143.15 1.69
NDW t–1I L8 143.37 2.64 PSRI t–2 S2 143.25 1.79
NDVI t–2 (B5&B8) S2 143.55 2.81 Clre S2 143.26 1.81
NDVI t–2 (B4&B8A) S2 143.81 3.08 NDVI t–2 (B5&B8A) S2 143.31 1.85
SR t–1 S2 143.88 3.14 SR t–1 S2 143.41 1.96
EVI S2 144.03 3.29 NDVI t–2 (B7&B8) S2 143.58 2.12
NDre2 S2 144.24 3.51 NDVI t–1 L8 143.72 2.26

Fig. 5. Non-linear curves for models with the lowest DIC. (a). Mice counts (µ ) vs EVI t–2; (b). A. azarae presence probability (ρi) vs NDVI(B6&B8) t–1; (c). C. musculinus
presence probability (ρi) vs NDVI(B7&B8) t–1.
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Appendix

Table 6
Description of indices derived from Sentinel-2 (S2) and Landsat 8 (L8) imagery.

Acronym Description Equation S2 L8 Reference

NDVI Normalized Difference Vegetation Index = +NDVI NIR Red
NIR Red

x x (Merzlyak et al., 1999)

EVI Enhanced Vegetation index = + +EVI G NIR Red
NIR C Red C Blue L1 2

x x

GNDVI Green Normalized Vegetation index = +GNDVI Green Red
Green Red

x x

SR Simple Ratio =SR NIR
Red

x x

DVI Difference Vegetation Index DVI=NIR− Red x x
NDVI (B8 & B5) Normalized Difference Vegetation Index with red edge 1 = +NDVI NIR Red Edge

NIR Red Edge
x (Gitelson et al., 2003)

NDVI (B8 & B6) Normalized Difference Vegetation Index with red edge 2 = +NDVI NIRa Red Edge
NIR Red Edge

x (Fernández-Manso et al., 2016)

NDVI (B8 & B7) Normalized Difference Vegetation Index with red edge 3 = +NDVI NIRa Red Edge
NIR Red Edge

x (Fernández-Manso et al., 2016)

NDVI (B8A & B5) Normalized Difference Vegetation Index with red edge 1 narrow = +NDVI NIRa Red Edge
NIRa Red Edge

x (Fernández-Manso et al., 2016)

NDVI (B8A & B6) Normalized Difference Vegetation Index with red edge 2 narrow = +NDVI NIRa Red Edge
NIRa Red Edge

x (Fernández-Manso et al., 2016)

NDVI (B8A & B7) Normalized Difference Vegetation Index with red edge 3 narrow = +NDVI NIRa Red Edge
NIRa Red Edge

x (Fernández-Manso et al., 2016)

PSRI Plant Senescence Reflectance Index =PSRI NIR Green
Red Edge

x (Barnes et al., 2000)

Clre Chlorophyll Index red edge =CLre 1Red Edge
Red Edge

x (Chen, 1996)

NDre1 Normalized Difference red-edge 1 = +NDre1 Red Edge Red Edge
Red Edge Red Edge

x (Gitelson et al., 2003)

NDre2 Normalized Difference red-edge 2 = +NDre2 Red Edge Red Edge
Red Edge Red Edge

x (Barnes et al., 2000)

MSRre Modified Simple Ratio red-edge
=MSRre

NIR
Red Edge

NIR
Red Edge

1

1

x (Chen, 1996)

MSRren Modified Simple Ratio red-edge narrow
=MSRren

NIRa
Red Edge

NIRa
Red Edge

1

1

x (Fernández-Manso et al., 2016)

NDWI Normalized Difference Water Index = +NDWI Green NIR
Green NIR

x x (McFeeters, 1996)

MNDWI Modified Normalized Difference Water Index =
+

MNDWI Green SWIRb

Green SWIRb
x x (Xu, 2006)

References: a: narrow NIR (band 8A); b: SWIR (band 11); ∗: Red-edge 1 (band 5); ∗∗: Red-edge 2 (band 6); ∗∗∗: Red-edge 3 (band 7).

Fig. 6. Time series plot of S2 and L8 average NDVI and EVI for the period September 2016–April 2017. A total of 11 S2 and 12 L8 scenes were processed and the
values of NDVI and EVI were extracted.
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